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THE FINAL EXAM

Due at 3 PM, March 19th

Guidelines:

• There are two problems in this exam. You should try to go as far as you
can on both problems. Problem 2 seems long, but don’t panic – that’s
only because I add a lot of explanation and hints.

• The only reference you are allowed to use is the textbook, as well as the
homework assignments and the solutions. You must work on the exam
by yourself. No discussion is allowed with any other person.

• You are allowed to use computer software or calculator for algebraic and
numerical computations.

• You are required to derive every equation you write down, except for
those derived in the textbook. If you make use of an equation in the
textbook, you must cite the original equation in the textbook explicitly.
Failure to give the original reference will result in partial or no credit at
all.

• It is important for you to clearly state the logic of your answers. I will
not make any attempt to ”guess” your results. If I cannot follow what
you write, I cannot give you the credit.

• Please return your answers to Grant Darktower in the departmental
office by the deadline. Or, if you wish, email an electronic version of
your answers to me by the deadline.
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Problem 1: Renormalization of the Scalar φ3 Theory
In this problem we will consider the scalar φ3 theory in d dimensional space-
time with the following Lagrangian:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

3!
g φ3.

(a) There is an obvious pathology (instability) in this theory even at the
classical level. What is it?
As a toy model, let’s ignore the pathology and study its perturbation in
quantum theory, which is well-defined.
(b) Determine all superficially divergent Green’s functions of L in d = 4 and
the corresponding degree of divergence.
(c) Compute all the superficially divergent 1-PI diagrams to one-loop order
using Dimensional Regularization (DR). Determine the form of the counter
terms necessary to remove the UV divergences. Proceed to renormalize in
MS scheme.
(d) Repeat (b) and (c) in d = 6.
(e) Compute and renormalize (in MS scheme) the scalar self-energy in d = 8.
In this case you will need to introduce a counter term corresponding to a
higher dimensional operator not already present in L. Write down this op-
erator.
(f) Use dimensional analysis to determine whether the φ3 operator is a rele-
vant, marginal, or irrelevant operator in d =4, 6, and 8, respectively.
(g) Now stay in d = 4 and compute the beta function β(g) = (µd/dµ)g(µ),
from which derive the effective coupling constant g(µ). Discuss the asymp-
totic behavior of the coupling in the UV and the IR, respectively. Does the
perturbation theory become more reliable in the UV or in the IR? Including
the quantum corrections, is φ3 a relevant, marginal, or irrelevant operator?
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Problem 2: Decoupling of Heavy Fermions in QED
The QED Lagrangian with a massive fermion is given by the following La-
grangian:

LQED = −1

4
FµνF

µν + Ψ̄(i /D −MΨ)Ψ

where the covariant derivative is Dµ = ∂µ − ieAµ.
(a) Compute the photon self-energy Π(q2) as defined in the textbook to lead-
ing order in α = e2/4π2. Use DR to regulate the Feynman amplitude in
d = 4− 2ε and express your answer as an integral over the Feynman param-
eter.
(b) Renormalize in a momentum-dependent scheme at an Euclidean subtrac-
tion point q2 = −M 2. Compute the renormalized Πr(q

2) and Z3.
(c) Compute the massive fermion contribution to the QED beta function
β(e) = (M∂/∂M)e. Again express your answer as an integral over the Feyn-
man parameter. Verify that when the fermion is light comparing to the
subtraction point, MΨ � M , β(e) reduces to the case of QED with a mass-
less fermion (as computed in Eq. (12.61) in the textbook.) On the other
hand, when the fermion becomes heavy, MΨ � M , its contribution to β(e)
and Πr(q

2) vanishes as

lim
MΨ�M

β(e) = C1
M 2

M 2
Ψ
, Πr(q

2) = C2
q2 +M 2

M 2
Ψ

.

Compute the constants C1 and C2.

The moral of the above story is that a massive fermion decouples from
low-energy physics when its mass becomes much heavier than the energy
scale we do the measurements. Very intuitive, right? Well, until you use a
momentum-independent renormalization scheme.

(d) Compute Πr(q
2) and Z3 in the minimal-subtraction (MS) scheme.

Compute β(e) in MS scheme and show that it is independent of the mass
MΨ of the heavy fermion and the renormalization scale µ. In the limit
MΨ � µ, determine from the form of Πr(q

2) in MS scheme whether you can
trust the perturbation theory or not.

So it seems that the heavy fermion do not decouple in the MS scheme
as it should. This is an artifact of using a non-decoupling scheme like the
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MS scheme. The decoupling in MS-like schemes can be achieved by explic-
itly constructing an effective field theory, valid below the mass of the heavy
fermion, where the heavy particle is ”integrated out.” To see how this works,
let’s consider an effective Lagrangian with only the photon:

Leff = −1

2
(Fµν)2,

where Aµ is the effective photon in the effective field theory, and may not be
identical to the corresponding Aµ in the full QED with a heavy fermion.

The requirement of a valid effective field theory is such that Leff repro-
duces exactly the same low-energy physics as in Lfull. In other words, we
”match” the Green’s functions in Leff , where the external legs are the light
states A, to the corresponding Green’s functions in the full theory with
the corresponding A as the external legs, at a scale close to MΨ. (Such a
procedure is called ”matching.”)

(e) Compute the renormalized two-point function in the full QED La-
grangian 〈0|T (Aµ(x)Aν(y))|0〉 by calculating the renormalized self-energy
Πr(q

2) to order α. Match the result to the two-point function in the effective
theory 〈0|T (Aµ(x)Aν(y))|0〉 and show that, in the limit |q2| � M 2

Ψ, one
must have

Aµ(x) = (1 + Πr(0))
1
2Aµ(x).

At order α the self-energy Πr(q
2) depends on the renormalization scale µ.

Explain why you should choose µ ≈MΨ.
(f) Now consider adding a light fermion ψ with mass mψ �MΨ to both the
full QED and the effective Lagrangians:

Lψfull = ψ̄(i/∂ + e/A−mψ)ψ,

Lψeff = ψ̄(i/∂ + eeff /A−mψ)ψ,

where eeff is the electric charge in the effective field theory. Use gauge
invariance to argue that

eeff = (1 + Πr(0))−
1
2e.

Moreover, show that the electric charge is the same at the matching scale
µ = MΨ: eeff(MΨ) = e(MΨ).
(g) Notice that the renormalized effective coupling eeff = eeff(e;µ,MΨ),
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which implies the renormalization group evolution of eeff is given by

µ
d

dµ
eeff =

(
µ
∂

∂µ
+ β(e)

∂

∂e
+ γMΨ

MΨ
∂

∂MΨ

)
eeff ≡ βeff(eeff),

where β(e) and γMΨ
are the beta function and the anomalous dimension of

the heavy mass parameter MΨ in the full QED Lagrangian with one heavy
and one light fermions. Compute effective beta function βeff(eeff) in the
effective theory and show that the heavy fermion is now decoupled and does
not contribute, contrary to the situation in (d).

To summarize, the way the decoupling works in MS-like scheme is to ex-
plicitly construct an effective field theory where a heavy particle is removed
by hand. One then matches the effective theory to the full theory at the
scale µ ≈ MΨ. We have seen that the coupling constant is continuous at
the matching scale µ = MΨ in (f). (This is true only at one-loop though.)
However, the beta function is discontinuous as one moves across the heavy
particle threshold MΨ: above the threshold the beta receives contributions
from both the heavy and light particles, while below the threshold it receives
contributions only from the light particles, as demonstrated in (g).
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